In silico structural and functional characterization of six potential virulence genes identified in Clarireedia spp.

Harshita Saxena¹(harshita.saxena@uga.edu), Rajiv K. Parvathaneni^{1,2}, Willis T. Spratling², Paul L. Raymer^{1,3}, Alfredo Martinez-Espinoza², Bochra A. Bahri^{1,2} ¹Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, 30223; ²Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA; ³Department of Crop and Soil Science, University of Georgia, Strengt, St Griffin, GA, 30223, USA Plant Center Retreat, December 15-16, 2021, Brasstown Valley Resort, Young Harris, GA, 30582

INTRODUCTION

Dollar spot is a foliar disease, having a wide host range, infecting both cool- and warm-season turfgrasses ¹. The causal agent for dollar spot was first identified in 1937, an ascomyete and a member of Sclerotiniaceae family, Sclerotinia homoeocarpa. However, in 2018, a new fungal genus Clarireedia was discerned comprising of four pathogenic species, C. homoeocarpa, C. bennettii, C. jacksonii, and C. monteithiana, that were responsible for dollar spot on turfgrass ². In US, two species, C. jacksonii, and C. monteithiana have been reported to cause dollar spot ³, and through next-generation sequencing, a novel species Clarireedia aff. paspali have been identified (Bahri, unpublished data) as another causal pathogen in the US. The pathogenicity of the three species was analysed by identifying orthologs in Clarireedia genomes of virulence genes previously identified in S. sclerotiorum⁴. Of the 13 potential virulence genes detected commonly in all three Clarireedia species, six were selected for this analysis.

Protein	рІ	Mol. Wt.	Amino Acids	Instability Index	Aliphatic Index	GRAVY
GPD		36563.64 -36772.67	338			
NOX1		58498.43 - 58697.64	510-511			
NOX2	5.49 -	66458.86 - 66693.26	580-581	24.24 -	76.83 -	(-0.369) - (-
PKA1	9.28	38814.19 - 38890	340-341	41.18	90.24	0.003)
PPH1		29527.26 - 29576.52	260			
SMK3		47113.89 - 47424.31	410-412			

Figure 7: Protein-protein interaction networks of the six virulence proteins (A-F: GPD, NOX1, NOX2, PKA1, PPH1, and SMK3) from C. aff. paspali, predicted using STRING v11¹⁵ and visualized using Cytoscape 3.9.0¹⁶. The interacting proteins with the virulence proteins

Functional Characterisation			(A2)		
			Protein Phosphorylation		
(A1)			Oxidoreductase Activity		
()		968	Reactive Oxygen Species Metabolic Process		
su	Hydrolase Activity	ces	Cellular Response to Osmotic Stress		

Figure 1: Percentage coverage and confidence of prediction of 13 putative virulence proteins from S. sclerotiorum, based on known templates to predict the 3-D protein structures using Phyre2 server ⁵. Six virulence proteins with good prediction were selected. *Clarireedia* aff. paspali, C. jacksonii and C. monteithiana presented similar coverage (86 - 99%) and confidence of prediction (99.90 - 100%) for the 6 selected virulence proteins than *S. sclerotiorum*

Plasma membrane Peroxisome Cytoplasm Figure 4: Subcellular localization of the six virulence proteins in *Clarireedia* into different sub-cellular compartment: cytoplasm, plasma membrane and peroxisome, predicted using an Interpretable Subcellular Localization Prediction tool, Yloc ¹². *Clarireedia* is represented by C. aff. paspali, C. jacksonii and C. monteithiana.

Motif Analysis *p*-value Motif Locations Name 4.39e-230 GPD_Clarireedia GPD_S. sclerotiorum 2.36e-231 0.00e+0 NOX1_Clarireedia 0.00e+0 NOX1_S. sclerotiorum NOX2_Clarireedia 0.00e+0 0.00e+0 NOX2_S. sclerotiorum 2.88e-34 PKA1_Clarireedia 1.18e-35 PKA1_S. sclerotiorum 9.71e-240 PPH1_Clarireedia 7.82e-240 PPH1_S. sclerotiorum 7.34e-274 SMK3_Clarireedia 1.32e-273 SMK3_S. sclerotiorum Motif Symbol Motif Consensus

■ GPD ■ NOX1 ■ NOX2 ■ PKA1 ■ PPH1 ■ SMK3

Figure 8: GO-based functional annotation (A1:Molecular Functions, A2:Biological Processes, A3:Cellular Components) of six virulence proteins, and pathway analysis of the proteins with their interacting partners (B) using Blast2GO¹⁸.

SUMMARY/ CONCLUSION

- Six potential virulence genes in *Clarireedia*, gpd, nox1, nox2, pka1, pph1, and smk3, reproduced good three-dimensional protein structures and were selected for further analysis. The 3-D structure visualization showed shared and distinct regions between S. sclerotiorum and Clarireedia spp.
- ✓ Species-specific SNP variations were identified between the three Clarireedia species.
- ✓ Physicochemical characteristics gave insight about the stability of the proteins; sub-cellular localization suggested that they majorly localised in cytoplasm. Motif analysis and gene structure analysis identified similar conserved motifs, and intron-exon arrangement between *Clarireedia* and S. sclerotiorum. Gene ontology-based functional annotation revealed that *PKA1* and SMK3; NOX1 and NOX2 had similar functions. Pathway analysis highlighted the involvement of the virulent proteins and their interactors in major pathways like MAPK signalling pathway. \checkmark Further studies are needed to understand the function of these virulence genes in *Clarireedia* and gain insights into the structural and functional disparities of these virulence genes within *Clarireedia*.

C. aff. paspali
C. monteithiana
C. jacksonii

Figure 2: Number of species-specific SNPs detected between *Clarireedia* species in the six virulence proteins

Structure validation

GEORGI

100

Table 1: Structure validation (quality assessment and model validation) values of the six selected virulence proteins assessed using SAVES v6.0 ^{6–8} and Qualitative Model Energy ANalysis (QMEAN) ⁹ tools. Clarireedia is represented by C. aff. paspali, C. jacksonii and C. monteithiana

	Ramachandran Plot Statistics (in %)						
Organism	Most favored regions	Additional allowed regions	Generously allowed regions	Disallowed regions	Verify 3D	ERRAT Quality Factor	QMEAN Z-score
S. sclerotiorum	70.8 - 89	10.7 - 22.1	0.2 - 6.4	0 - 1.7	59.27 - 93.33	50.6667 - 82.0163	(-8.79) - (-1.4)
Clarireedia*	73.7 - 89.3	10.4 - 21.5	0.2 - 3.6	0 - 1.4	65.86 - 98.02	54.3689 - 81.3699	(-8.5) - (- 1.27)
* represents C. paspali, C. jacksonii and C. monteithiana							

Figure 5: Presence of the ten novel conserved motifs in the six virulence proteins computed using MEME suite ¹³.

Gene Structure Analysis

Figure 6: The distribution of introns, exons and upstream/downstre in six virulence genes computed using Gene Structure Display Sei 2.0¹⁴. *Clarireedia* is represented by *C. aff. paspali*.

ACKNOWLEDGMENT

This project is funded by the Georgia Department of Agriculture Specialty Crop Block Grant program (RGDAG0001120501 and FP00020738).

REFERENCES

3' 1800bp	 Allen <i>et al.</i> (2005) doi:10.1094/PHI-I-2005-0217-02. Salgado-Salazar <i>et al.</i> (2018) <i>Fungal Biology</i> 122:761–773. Sapkota <i>et al.</i> (2020) <i>Plant Disease</i> 104: 3063. 	 10.Pettersen <i>et al.</i> (2004). <i>J Comput Chem</i> 25:1605–1612. 11.Gasteiger <i>et al.</i> (2005). <i>Humana Press:</i> 571–607. 12.Briesemeister <i>et al.</i> (2010). <i>Nucleic Acids Res</i> 38: W497–W502.
ream		13.Bailey <i>et al.</i> (2015). <i>Nucleic Acids Research</i> 43: W39–W49. 14.Hu <i>et al.</i> (2015). <i>Bioinformatics</i> 31: 1296–1297. 15.Szklarczyk (2019). <i>Nucleic Acids Research</i> 47:D607–D613.
erver	 Bowie <i>et al.</i> (1991). Science 253: 164–170. Colovos <i>et al.</i> (1993). Protein Sci 2: 1511–1519. Laskowski <i>et al.</i> (1993). J Appl Cryst 26: 283–291. Benkert <i>et al.</i> (2011). Bioinformatics 27: 343–350. 	 16.Shannon <i>et al.</i> (2003). <i>Genome Res</i> 13: 2498–2504. 17.The UniProt Consortium (2021). <i>Nucleic Acids Research</i> 49: D480–D489. 18.Conesa <i>et al.</i> (2008). <i>Int J Plant Genomics</i> 2008: 619832